Chapter 8

Polygons and Area

Section 7
Circumference and Area of Circles

A circle is the set of all points in a plane that are the same distance from a given point, called the center of the circle. A circle with center P is called "circle P," or $\odot P$.

The distance from the center to a point on the circle is the radius. The plural of radius is radii.

The distance across the circle, through the center, is the diameter . The diameter d is twice the radius r. So, $d=2 r . \quad r=\frac{1}{2} d$ The circumference of a circle is the distance around the circle.

circumference

For any circle, the ratio of the circumference to its diameter is denoted by the Greek letter π, or $p i$. The number π is $3.14159 \ldots$, which is an irrational number. This means that π neither terminates nor repeats. So, an approximation of 3.14 is used for π.

CIRCUMFERENCE OF A CIRCLE

Words Circumference $=\pi$ (diameter)

$$
=2 \pi \text { (radius) }
$$

Symbols $C=\pi d$ or $C=2 \pi r$

Example 1: Find the Circumference of a Circle

Find the circumference of the circle.

$$
\begin{aligned}
C= & 2 \pi r \\
& 2(3.14)(4) \\
& 25.121 n .
\end{aligned}
$$

Checkpoint: Find the circumference of a Circle
Find the circumference of the circle. Round your answer to the nearest whole number.
1.

$2 \pi r$
$2(3.14)(6)$
37.68

38 cm
2.

$2(3.14)(9)$
56.52

57 ft
3.

$2(3.14)(8)$
50.24

50 in.

AREA OF A CIRCLE

Words Area $=\pi(\text { radius })^{2}$
Symbols $\mathrm{A}=\pi r^{2}$

Example 2: Find the Area of a Circle

Find the area of the circle.

$$
A=\pi r^{2}
$$

$$
3.14(7)^{2}
$$

$$
3.14(49)
$$

$$
153.86 \mathrm{~cm}^{2}
$$

Example 3: Use the Area of a Circle

Find the radius of a circle with an area of 380 square feet.

Checkpoint: Find the Area of a Circle
Find the area of the circle. Round your answer to the nearest whole number.
4.

$3.14(8)^{2}$
$3.14(64)$
200.96
$201 \mathrm{~m}^{2}$
5.

$3.14(3)^{2}$
$3.14(9)$
28.26
$28 \mathrm{~cm}^{2}$
6.

$3.14(6)^{2}$
$3.14(36)$
113.04
$113 \mathrm{ft}^{2}$

Central Angles An angle whose vertex is the center of a circle is a central angle of the circle.

A region of a circle determined by two radii and a part of the circle is called a sector of the circle.

Because a sector is a portion of a circle, the following proportion can be used to find the area of a sector.

Example 4: Find the Area of a Sector

Find the area of the blue sector.
Area of circle

$$
\begin{aligned}
& \text { Area of arcle } \\
& \rightarrow \pi r^{2} \rightarrow 3.14(9)^{2}=254.34 \\
& \frac{x}{254.34} \times \frac{120}{360} \\
& \frac{360 x}{360}=\frac{30520.8}{360} \\
& 84.78 \mathrm{~m}^{2}
\end{aligned}
$$

Checkpoint: Find the Area of a Sector
In Exercises 7 and 8, \boldsymbol{A} represents the area of the entire circle and x represents the area of the blue sector. Complete the proportion used to find x. Do not solve the proportion.

8. $A=28 \mathrm{ft}^{2}$

$$
\frac{x}{?}=\frac{?}{360^{\circ}}
$$

Checkpoint: Find the Area of a Sector

Find the area of the blue sector. Round your answer to the nearest whole number.

10.

11.

EXIT SLIP

