Chapter 8 Polygons and Area

Section 7 Circumference and Area of Circles

A **circle** is the set of all points in a plane that are the same distance from a given point, called the **center** of the circle. A circle with center P is called "circle P," or $\bigcirc P$.

The distance from the center to a point on the circle is the **radius**. The plural of radius is *radii*.

The distance across the circle, through the center, is the **diameter**. The diameter d is twice the radius r. So, d = 2r.

The **circumference** of a circle is the distance around the circle.

For any circle, the ratio of the circumference to its diameter is denoted by the Greek letter π , or pi. The number π is $3.14159\ldots$, which is an irrational number. This means that π neither terminates nor repeats. So, an approximation of 3.14 is used for π .

CIRCUMFERENCE OF A CIRCLE

Words Circumference = π (diameter) = 2π (radius)

Symbols $C = \pi d$ or $C = 2\pi r$

Example 1: Find the Circumference of a Circle

Find the circumference of the circle.

$$C = 2\pi V$$
 $23 \cdot 14$
 $35 \cdot 14$

Checkpoint: Find the circumference of a Circle

Find the circumference of the circle. Round your answer to the nearest whole number.

AREA OF A CIRCLE

Words Area = π (radius)²

Symbols $A = \pi r^2$

Example 2: Find the Area of a Circle

Find the area of the circle.

Example 3: Use the Area of a Circle

Find the radius of a circle with an area of 380 square feet.

$$A = TTr^2$$
 $380 = 314r^2$
 3.14
 3.14
 3.14
 $11.00 + 1 = r$

Checkpoint: Find the Area of a Circle

Find the area of the circle. Round your answer to the nearest whole number.

Central Angles An angle whose vertex is the center of a circle is a **central angle** of the circle.

A region of a circle determined by two radii and a part of the circle is called a **sector** of the circle.

Because a sector is a portion of a circle, the following proportion can be used to find the area of a sector.

Area of sector

Area of entire circle

Measure of central angle

Measure of entire circle

Example 4: Find the Area of a Sector

Find the area of the blue sector.

Checkpoint: Find the Area of a Sector

In Exercises 7 and 8, A represents the area of the entire circle and x represents the area of the blue sector. Complete the proportion used to find x. Do not solve the proportion.

7.
$$A = 22 \text{ m}^2$$

$$\frac{x}{?} = \frac{180^{\circ}}{?}$$

8.
$$A = 28 \text{ ft}^2$$

$$\frac{x}{?} = \frac{?}{360^{\circ}}$$

Checkpoint: Find the Area of a Sector

Find the area of the blue sector. Round your answer to the nearest whole number.

EXIT SLIP